
! ARMY RESEARCH LA BORA TORY

Animation Techniques in BRL-CAD

ARL-TR-313

Lee A. Butler
Christine Murdza

APPROVED FOR PUBUC RELEASE; DISTRIBUTION IS UNUMITED.

December 1993

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information
Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 .

The findings of this report are not to be construed as an official Department of the Army
position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in th is report does not constitute
indorsement of any commercial product.

.........

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

g;uo ftc reoorl•""~g curoen for trw:. c:cllect10n of nforrra~tor ·~ estt,.,a~~o to a ... erage · nour oe .. ·esoorie. tnCIUOII''~ t ""~e t i'''Mf' fer tf!\i •ew .,g tnstruct10ns. st"ar:ntli~ e xtstmg oata sourc~.
gatnenng and M a1ntatn 1ng the data neeaed. a no corrotetcng ana r~•ew~t·~.q tt'le ..::l•ecteon of •nfcrl""'at lon Sena ccmments reaaro n; tt"~IS ouraen est•mate cr an .. · otner asoect of tnts
collecteon of tnformauo". rclt.~amg su;gestiOI'\~ fer r~uctnc :rus ouroer t 'J .\tasr•nQton neaoouarte"1 Servtces, O•rectorate fo .. ·r 'o'mat•or O~rattOI'lS ana '\e-ooru. 1215 Jefferson
Oa'IIS Htgnwa1. Sutte 1104 .:.rhrg to,.., It.. i2202.4JC2 ana to tne Off•c'! ~f , .. ~a,.aqe,....ent ana 3uoge ~ Pacer"" or~ Re<H.:t•or P·o,e:t (0704·01 88). Wasn,ngton, ~C 1:)503

1. AGENCY USE ONLY (Leave blank) ,2 . REPORT DATE ,3. REPORT TYPE AND DATES COVERED
December 1993 Final

4 . TITLE AND SUBTITLE 5. FUNDING NUMBERS

Animation Techniques in BRL-CAD
PR: 1L162618AH80

6 . AUTHOR(S)

Lee A. Butler and Christine Murdza

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) a. PERFORMING ORGANIZATION
REPORT NUMBER

U.S. Anny Research Laboratory
ATIN: AMSRL-SL-BV
Aberdeen Proving Ground. MD 21005-5066

9 . SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING I MONITORING
AGENCY REPORT NUMBER

U.S. Anny Research Laboratory
ATIN: AMSRI,OP-CI-B (Tech Lib) ARL-TR-313
Aberdeen Proving Ground, MD 21005-5066

11 . SUPPLEMENTARY NOTES

12a. DISTRIBUTION I AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (M aximum 200 w ords)

Complex model systems can be difficult to depict using static images. Some phenomena are not apparent when viewed
at a single instance in time. Many such things become much clearer, easier to detect and understand when they can be
presented as moving, changing, evolving entities. For this reason, a set of tools have been created to help users generate
motion picture sequences of systems modeled with BRL-CAD.

Raytracing is a fundamental analysis and rendering technique within BRL-CAD. Most users of BRL-CAD are acquainted
with the use of the program "rt" for creating still images. A relative few understand how to utilize its capabilities for
generating animation sequences or "movies." This paper inttoduces some of the tools and techniques available for creating
animation sequences with "rt." A basic lcnowledge of BRL-CAD, the geometry editor "mged" and image creation using
"rt" is assumed.

14. SUBJECT TERMS

BRI,CAD, animation, video tape recording, ray tracing

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

UNCLASSIFIED UNCLASSIFIED

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

35
16. PRICE CODE

20 . LIMITATION OF ABSTRACT

UL
-Standard ~orm 298 (Rev. 2-89)

Pr•.cmx•d b) ANSI Std Z39· 18
298· ' 02

INTENTIONALLY LEFf BLANK.

ii

Table of Contents

1. IN1"R.ODUCI'ION . 1

1.1 Preliminaries . 1

2. SIMPLE CAMERA MOTION 1

2.1 Key Frames . 1
2.2 Generating Key Frames with MGED . 1
2.3 Key Frame Interpolation . 2
2.4 Building the RT Animation Script 5
2.5 Previewing Animations with MGED . 6
2.6 Creating Postage Stamp Animations . 7

3. OBJECf MOTION 7

3.1 Matrix Manipulations 7
3.2 The RT Matrix Operations for Animation 8
3.3 Preparing an Animation with Motion . 10

4. MAKING FRAMES FOR VIDEO TAPE 13

4.1 Frrune Rate 13
4.2 Video Tape Formats 13
4.3 Image Size and Quality . 14
4.4 Image Aspect Ratio 14
4.5 Color Selection 15
4.6 Computational Requirements 15
4.7 Storage Requirements 16

5. COMPUTING VIDEO FRAMES . 17

6. RECORDING VIDEO . 18

7. CONCLUSION 19

8. REFERENCES 21

APPENDIX A: Tabinterp . 23

APPENDIX B: Tabsub 31

PLATES 37

DISTRIBUTION 39

iii

INTENTIONALLY LEFr BLANK.

iv

1. Introduction

Moving pictures are created by presenting the viewer with a sequence of still images in quick succession.
Objects which occur in an orderly succession of slightly different locations within a sequence of images appear to
be in motion to the viewer. Such an object is said to be "animated." Preparing a moving picture of animated
objects requires a large number of still images (often called ''frames'').

Still images of computer models are relatively easy to create within BRL-CAD.1 The program rt uses the
technique of ray-tracing to create images of geometric models.2 A moving picture or "animation" of the model can
be created by using rt to create a series of still images, each of which forms a frame of the final moving picture. The
difficulty arises in specifying each frame for rt to create. Some tools have been created to help make this process
easier.

1.1. Preliminaries

Before there can be motion there must first be form. This means a description of geometry to be animated
must exist. To keep things simple, we will use the "moss" database distributed with BRL-CAD. Assuming that the
distribution is stored in the directory /cadsrc the following command will create a local copy of the database for use
with the examples presented here:

% asc2g < /cadsrc/dblmoss.asc > moss.g

Examples such as the one above will be presented with the portion typed by the user shown in bold typeface.

2. Simple Camera Motion

2.1. Key Frames

The first step in creating an animation sequence is the definition of "key-frames." These are descriptions of
what the scene should look like at "key" moments in the animation sequence. Some key-frames are readily recog
nized. The frame in which the camera or an object starts or stops moving is important. Likewise, the moment when
an object changes direction or velocity is also important. It is good to define one or two key-frames before and after
each of these points of change.

Generating key-frames with mged is easy. The user displays the wireframe of the desired geometry and
manipulates the display until the desired view is achieved. To save the key-frame information in a file, the mged
keyboard command "saveview" is used. This command creates a shell script with the proper invocation of the rt
program to render the current scene. The argument to the '' saveview' ' command is the filename for the shell script.
Note that the keyboard command "saveview" is distinct and different from the menu option visible in the button
menu on the geometry display.

To keep things orderly and make later processing easier, it is recommended that the user specify key-frame
filenames which have a common prefix followed by a number indicating the time in the animation sequence at
which the key-frame occurs.

2.2. Generating Key Frames with MGED

For our first example, we will create a simple animation with the "moss.g" model. The objective is to begin
the animation sequence with a view of the geometry from the front comer of the platform. As time goes by, the
viewer's location (the "eye point" or "eye_pt") moves upward in an arc over the geometry until the viewer is
looking directly down on the center of the platform. To give a natural feeling of flight, the eye point should
accelerate and decelerate at the beginning and end of its travel respectively. This is achieved by adjusting the
number of degrees of elevation the eye will raise in each second of the animation. In the first (and last) three quar
ters of a second of the animation, the eye raises only 2 degrees of elevation above the plane. In the following
second 8 degrees of arc are covered. At the 4 second mark the eye is looking down at a 45 degree angle.

I See [Deitz89) for an overview of BRL-CAD.
2 See [Muuss88a) for a discussion of modeling and raytracing within BRL-CAD, and [Muuss88b] for a discussion of

the rt lighting model.

1

% mged moss.g
BRL-CAD Release 4.1 Graphics Editor (MGED)

Tue Oct 20 14:19:59 EDT 1992, Compilation 5
stay@vail:/nlwolf/m/dist4.1/mged

attach (nuitekitek41091pslplotlsgi1X)[nu]? sgi
ATTACHING sgi (SGI 4d)
Gary Moss's ''World on a Platter" (units-mm)
mged> e all.g
408 vectors in 1 sec
mged> center 20 0 0
mged> size 200
mged> ae45 0
mged> saveview moss_O
mged> ae45 2
mged> saveview moss_0.75
mged> ae 4510
mged> saveview moss_1.75
mged> ae 45 45
mged> saveview moss_ 4
mged> ae 45 80
mged> saveview moss_6.25
mged> ae 45 88
mged> saveview moss _7 .25
mged> ae 45 90
mged> saveview moss_ 8
mged> q
%

At this stage there are seven key-frame files in the current directory with the names:

moss_O moss_1.75
moss_0.75 moss_ 4

moss_6.25
moss_7.25

moss_8

A look at the contents of one of the key-frame files shows that the scene is stored as four separate elements.
These elements are the geometry being displayed, the size of the viewing cube or "viewsize", the location in 3
dimensional space of the camera or "eye_pt", and the "orientation" of the geometry within space. All animations
which involve the observer moving about a static object can be generated from these parameters.

These key-frames do not represent all of the images necessary to produce the animation. They only specify
the significant moments in the animation. It is necessary to generate the " in-between" frames as well to tum the
key-frames into a smooth animation. The values for the "viewsize," "eye_pt" and "orientation" attributes of
these "in-between" frames are generated by interpolating the values which describe the key-frames.

2.3. Key Frame Interpolation

BRL-CAD has a utility for performing interpolation called ''tabinterp.'' It operates on files containing
columns of numbers. The left-most column is always used to hold the time in the animation at which the data in the
other columns occurs. A column is referred to as a "channel." Lines beginning with a "#" character are con
sidered to be comments, and are ignored by tabinterp. Table A shows an example input file for tabinterp.

2

Table A

#Time X y z
0 100 0 0
1 74.24 51.98 42.23
2 -91.85 91.85 75

This table has four channels (columns). The leftmost channel is always the " time channel". In this instance
the "time channel" has the values 0, 1, and 2. The time channel has no inherent unit associated with it. These
values could represent microseconds, seconds, minutes, etc. depending upon the motion being specified. The
second column contains the first actual data channel in this file. In this instance it is an X coordinate. There are
three data channels in this file. The contents of the file are said to form an interpolation table.

To create the "in-between" frames of our animation, we need to extract the values which are arguments to
the "viewsize", "eye_pt", and "orientation" commands tort stored in the key-frame files. These values must be
tabulated for input to tabinterp.

While it would be possible to concatenate the key-frame files and edit the result by hand to create the table,
this would be tedious for all but the simplest animations. Instead it is recommended that a shell script such as the
"key-chans" script shown below be employed to do the work.

#!/bin/sh
if ["$#" !- "I"] ; then

echo "Usage: $0 basename"
exit

fi
awk 'r viewsize/ { print FILENAME II II $2 }' $1 * I\

sed -e 'sl;/1' -e "s!A$11/" I sort -n > chans.vsize

awk ·r eye_pt/ {print FILENAME"" $2 "" $3 " 11 $4}' $1 * 1\
sed -e 's/;11' -e "s!A$1//" I sort -n > chans.eyept

awk •rorient/ {print FILENAME 11
" $2 " 11 $3 1

"
1 $4 11

" $5}' $1 *I \
sed -e 's/;1/' -e "s/A$11/" I sort -n > chans.orient

This shell script creates the three files "chans.vsize", "chans.eyept" , and "chans.orient" from key-frame files
which share the same basename (such as "moss_"). The shared basename is specified on the command line.

% key-cbans moss_

The files "chans.vsize," "chans.eyept," "chans.orient" now contain the values needed for interpolation. The file
"chans.vsize" contains the argument to the " viewsize" directive in the key-frame files. Likewise, "chans.eyept"
contains the X, Y, and Z arguments to the "eye_pt" directive and "chans.orient" contains the quaternion3 argu
ment to the "orientation" directive.

cbans. vsize

0 2.000000000000000+02
0.75 2.000000000000000+02
1. 75 2.000000000000000+02
4 2.000000000000000+02
6.25 2.000000000000000+02
7.25 2.000000000000000+02
8 2.000000000000000e+02

3 See [Shoemake8S] for a description of quatemions and their use.

3

chans.eyept
0 9.071067811865476e+01 7.071067811865474e+01 O.OOOOOOOOOOOOOOOe+OO
0.75 9.066760308408352e+Ol 7.066760308408351e+Ol 3 .489949670250149e+OO
1.75 8.963642403200188e+Ol 6.963642403200188e+01 1.736481776669301e+Ol
4 6.999999999999997e+01 4.999999999999999e+Ol 7.071067811865471e+Ol
6.25 3.227878039689727e+01 1.227878039689727e+01 9.848077530122080e+01
7.25 2.246776707783357e+01 2.467767077833573e+00 9.993908270190957e+01
8 2.()()()()()()()(+01 0.()()()()()()()(+00 9.999999999999999e+Ol

cbans.orient
0 2. 705980500730985e-O 1 6.5328I4824381883e-OI 6.532814824381883e-O 1 2. 705980500730985e-O 1
0.75 2.658342495283891e-01 6.4I7806505547I06e-01 6.645833184536355e-01 2. 7 52794238304135e-O 1
1.75 2.45984I687565966e-O I 5.938583163412476e-01 7.0773278I9916303e-01 2.9315251683697 43e-O 1
4 I .464466094067262e-O I 3.535533905932737e-OI 8.535533905932737e-OI 3.535533905932737e-OI
6.25 3.335305878500257e-02 8 .052I40686538031 e-02 9.20363 8919632243e-0 1 3.812272063696535e-01
7.25 6.678 7 46798450 165e-03 1.612392I10047428e-02 9.23 73882II8357 43e-0 1 3.826251478247717e-01
8 O.OOOOOOOOOOOOOOOe+OO 0.00000000000000000 9.238795325112867e-Ol 3.826834323650898e-01

Now the key-frame data can be interpolated. The tabinterp4 program reads commands from standard input
until end-of-file is found. Commands specify files from which interpolation tables should be read, which channels in
the tables should be used, what type of interpolation should be applied, and the range of time over which values are
needed. When end of file is reached, tabinterp performs any interpolations requested and writes out the requested
results.

% tabinterp << EOF > chans.all
file chans.vsize 0;
file chans.eyept 1 2 3;
file chans.orient 4 56 7;
times 0 8 3;
interp spline 0 1 2 3 4 5 6 7;
EOF
cmd: file chans.vsize 0
chan 0: File 'chans.vsize' , Column 1
cmd: file chans.eyept 1 2 3
chan 1: File 'chans.eyept', Column 1
chan 2: File 'chans.eyept', Column 2
chan 3: File 'chans.eyept', Column 3
cmd: file chans.orient 4 5 6 7
chan 4: File 'chans.orient', Column 1
chan 5: File 'chans.orient', Column 2
chan 6: File 'chans.orient', Column 3
chan 7: File 'chans.orient', Column 4
cmd: times 0 8 3
cmd: interp spline 0 1 2 3 4 5 6 7
performing interpolations
writing output
%

In this instance, the data from the "viewsize" interpolation table is read into channel 0 of tabinterp. The eye
point data is acquired from another file to fill channels 1, 2, and 3. The orientation table data are read into channels
4, 5, 6, and 7. The user command "times 0 8 3" indicates that interpolation is to be performed for the time
sequence starting at time 0, through time 8 with 3 frames per time step. If each time step represents a second, this is

4 A description of tabinterp can be found in Appendix A.

4

not enough frames per second for a finished product such as a videotape, but it will be sufficient to create a preview
of the sequence. It would not be wise to expend the CPU time required to compute all of the frames before we are
certain that we have the sequence correct.

chans.all
0 200 90.7107 70.7107 0 0.270598 0.653281 0.653281 0.270598
0.333333 200 90.6992 70.6992 1.11757 0.26908 0.649617 0.656908 0.2721
0.666667 200 90.6764 70.6764 2.87542 0.266677 0.643815 0.662597 0.274457
1 200 90.6193 70.6193 5.86093 0.262565 0.633889 0.672216 0.278441
1.33333 200 90.4026 70.4026 10.2013 0.256455 0.619137 0.685929 0.284121
1.66667 200 89.8485 69.8485 15.7869 0.248331 0.599525 0.703018 0.291199
2 200 88.7905 68.7905 22.4928 0.238198 0.575062 0.722757 0.299376
2.33333 200 87.1626 67.1626 30.0787 0.226209 0.546117 0.744384 0.308334
2.66667 200 84.9511 64.9511 38.245 0.212592 0.513243 0.76712 0.317752
3 200 82.1425 62.1425 46.6914 0.197578 0.476996 0.790185 0.327305
3.33333 200 78.7234 58.7234 55.118 0.181396 0.437929 0.812799 0.336672
3.66667 200 74.6804 54.6804 63.2244 0.164276 0.396596 0.834181 0.345529
4 200 70 50 70.7107 0.146447 0.353553 0.853553 0.353553
4.33333 200 64.7064 44.7064 77.3298 0.128166 0.309419 0.870291 0.360486
4.66667 200 58.9743 38.9743 83.0475 0.109797 0.265073 0.884398 0.36633
5 200 53.0158 33.0158 87.8828 0.091731 0.221458 0.896032 0.371149
5.33333 200 47.0433 27.0433 91.8548 0.0743588 0.179518 0.905354 0.37501
5.66667 200 41.2689 21.2689 94.9823 0.0580711 0.140196 0.912522 0.377979
6 200 35.9048 15.9048 97.2844 0.0432589 0.104436 0.917696 0.380122
6.33333 200 31.1631 11.1631 98.7807 0.0303124 0.0731806 0.921036 0.381506
6.66667 200 27.2134 7.21344 99.5643 0.0195628 0.0472287 0.922821 0.382245
7 200 24.1443 4.1443 99.8707 0.011226 0.0271019 0.923556 0.382549
7.33333 200 22.0332 2.03323 99.9515 0.00550101 0.0132806 0.923773 0.382639
7.66667 200 20.7902 0.790243 99.9837 0.00213547 0.00515548 0.923852 0.382672
8 200 20 0 100 0 0 0.92388 0.382683

The last command to tabinterp selects a spline interpolation for channels 0 through 7. When tabinterp runs
out of commands to process it performs the interpolation. The table "chans.all" shows the result of the interpola
tion.

Each column in chans.all represents one channel from the "tabinterp" session. The leftmost column is
always the time channel. The column next to that is data channel 0 from the tabinterp session. An examination of
the time channel on the left will reveal that the sequence runs from time 0 through time 8 and that there are 3 lines
(frames) for every integer time step.

This example used only spline interpolation. There are other interpolation techniques available including
step, linear, and circular spline (cspline). With step interpolation, a channel value is simply copied to intermediate
time points until a new value is encountered. The circular spline technique makes certain that the starting and stop
ping conditions of the time sequence are identical. The second derivative of the curve at the endpoints are made to
be the same. This is useful when a seamless loop of values is desired.

2.4. Building the RT Animation Script

The program ''tabsub'' uses the output from a run of tabinterp along with a template file to write an animation
script for rt. There are many types of ''macros'' which tabsub recognizes in the template. An understanding of two
of these is necessary for the current example.s The character "@" followed by an integer (such as @2) is replaced
by data from the interpolation channel of that number. Note that "@0" refers to values from the first data channel
from the interpolation. It does not refer to the time channel. The macro "@(line)" is replaced with the line
number of the file from which the data was read. The @(line) macro serves primarily to indicate the animation

5 A description oftabsub and the macros it recognizes can be foWld in Appendix B.

5

frame number. A template file ("moss.proto" for this example) should be created:

% cat moss.proto
viewsize @0;
eye_pt@ 1 @2 @3;
orientation @4 @5 @6 @7;
start @(line);
end;

This file can be used in conjunction with tabsub to create an animation script for rt.

% tabsub moss.proto chans.all > moss.rtanim

The resultant file • 'moss.rtanim'' is rather long, so for illustration purposes only the commands for the first
two frames are shown here.

% head -12 moss.rtanim
viewsize 200;
eye_pt 90.7107 70.7107 0;
orientation 0.270598 0.653281 0.653281 0.270598;
start 0;
end;

viewsize 200;
eye_pt 90.6992 70.6992 1.11757;
orientation 0.26908 0.649617 0.656908 0.2721;
start 1;
end;

2.5. Previewing Animations with MGED

Under Version 4.2 of BRL-CAD and beyond, the user has the ability to preview animations using mged. This
is a useful check to run before expending the CPU time to compute the images with rt.

% mged moss.g
BRL-CAD Release 4.2 Graphics Editor (MGED)

Wed Nov 11 00:36:43 EST 1992, Compilation 770
mike@ wolf. brl.rnil:/m/cad/ .mged.5d

attach (nultekltek41091pslplotjsgi)[nu]? sgi
ATTACHING nu (Null Display)
Gary Moss's "World on a Platter" (units-mm)
mged> preview moss.rtanim
tree
eyepoint at (0,0,1) viewspace
db_lookup: could not find 'EYE_PATH*'
mged> e all.g

Don' t let the "db_lookup" message frighten you. This is just mged telling you that there wasn't an
EYE_PATH overlay prior to your first "preview" command. This is the name of the " pseudo-object" that mged
creates for storing the overlay. This object is not written into the geometry database. The preview command paints
a small ''L'' shape at the eye point for each frame and connects all the comers together. The location of the ''L''
indicates the location of the eye for the frame. The orientation of the • 'L'' is in the plane perpendicular to the view
ing direction for the frame.

Look carefully at the path the eye will take during the animation. In this instance we want the path to form an
arc from near one of the corners of the platform to a point directly over the top of the platform. Does it look like
what was intended? Does the arc seem to pass through any of the objects? On a machine which supports fast
polygon rendering, such as the Silicon Graphics Iris, displaying the geometry with the "ev" command instead of

6

the "e" command will make finding eye/geometry collisions much easier.

2.6. Creating Postage Stamp Animations

Once you are convinced that the eye path is correct you are ready to produce a test animation. The file
''moss.rtanim'' can be fed directly to rt either from the command line or in a shell script. The invocation of moss.rt
shown below will generate images that are 200 pixels square. This is a good size to use for an initial rendering. It
will let us preview our animation before committing the resources to generate the complete animation.

% cat moss.rt
#!lbinlsh
rt -M $* -o moss.pix moss.g 'all.g' 2>> moss.log < moss.rtanim

% moss.rt -s 200

Once the frames have been computed, they can be turned into a "postage stamp animation". The " pixtile"
program takes many small images and creates a bigger image from a mosaic of the small images (See Plate 1 for the
image created by the pixtile command below). This image can then be displayed on a framebuffer, and the anima
tion sequence played using the ''fbanim'' command.

% mv moss.pix moss.pix.O
% tbserv -S 1024 0 /dev/sgip &
% setenv FB FILE :0
% pixtile -s 200 -S 1024 moss.pix I pix-tb -h
0 1 2 3 4 5 6 7 8 9 1 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24
% tbanim -81024 -s200 -p5 200 25 3

The fbanim program will show the animation sequence 5 times (the " -p5" option specifies number of passes
through the sequence). When fbanim finishes it will leave the framebuffer zoomed in on the last image. To un
zoom the framebuffer run the "fbzoom" program and give it the " r" command. This tells fbzoom to reset the
frame buffer to normal. Typing '' q'' will cause fbzoom to exit.

3. Object Motion

Animations involving just camera motion through a static scene or around a static object are adequate for
many different applications. Using only camera motion, the viewer can see what it would be like to walk through a
building which exists only as a computer model. The view from the driver's seat of a new vehicle design can be
created. Even a simulation of an object flying past the viewer can be created (by flying the viewer past the object
instead).

For a variety of applications, the true value of animation is realized only when the geometric objects them
selves have motion. Perhaps a vehicle drives past a familiar stationary landmark and the eye follows the vehicle
away after it enters the scene. As the vehicle drives over a bump in the road the suspension system is seen to flex
and energy is transferred to the frame. Things which cannot ordinarily be seen can be made more visible by watch
ing them change over time. As our vehicle crosses a bridge, its weight causes it to flex and vibrate even after the
vehicle is gone. These effects could be made visible by amplifying them until they are readily observable.

3.1. Matrix Manipulations

The animation of objects is accomplished by specifying matrix transformations to be applied to database ele
ments before each image is calculated. This allows any solid or combination in the model to have its definition
independently rotated, moved, or resized as the animation proceeds.

In BRL-CAD matrices are stored in a traditional mathematics form. This is different from (the transpose of)
the form used in most texts on computer graphics. In BRL-CAD matrices are stored as follows:

[

r 1 r2 r3 dx l
r4 r5 r6 dy
r7r8r9dz
0 0 0 lis

7

As a result, points and vectors in 3 dimensional space are represented as 4-tuple column vectors. Points and vectors
are therefore properly transformed by the matrix equation:

X'!w'] [rl r2 r3 dxl [X] r:1w: = r4 r5 r6 dy x Y
Z lw r7 r8 r9 dz Z

1 0 0 0 lis w

Individuals who are unfamiliar with matrix transformations in general and homogeneous coordinate systems in
specific are urged to study [Rogers90] or [Newman79] or [Foley92].

The matrix operations in a BRL-CAD database can be thought of as living in the arcs of the directed acyclic
graph. In slightly simpler terms, the matrix lives between an object (either primitive solid or combination record)
and the parent combination record in the model tree. The model coordinate system is on the "left" end of a
" stack" of matrix multiplications which is built up as the graph is traversed. When traversing the graph from the
root to the leaves, matrices encountered on the arcs are applied to the "right" of the matrix equation. For example,
the graph formed by "all.g" from our geometry file "moss.g" can be thought of as the following table:6

[MatrixPr] platfonn.r [MatrixPs] platform.s
[MatrixBr] box.r [MatrixBs] box.s
[MatrixEr] ellipse.r [MatrixEs] ellipse.s

[MatrixA] all.g
[MatrixCr] cone.r [MatrixCs] cone.s
[MatrixTr] tor.r [MatrixTs] tor
[MatrixLr] light.r [MatrixLs] LIGIIT

The program rt would transform the origin (and other parameters) of " tor" with the following matrix equa-
tion:

tor. location=[MatrixA J x[MatrixTr J x[MatrixTs J x ~~~:~]
tor.Z

3.2. The RT Matrix Operations for Animation

Each of the matrices in the database can be altered individually during the animation. It is also possible to
replace the "stack" matrix which has been accumulated. These operations are achieved with the " anim" com
mand in the input script to rt. The command has the form:

anim Path matrix Operation [Matrix];
where Path specifies the arc where the operation takes place. Either a specific use of the matrix within the model, or
all uses of an arc within the model can be specified.

The Operation portion of the anim command specifies the matrix operation to be performed. The set of valid
operations is listed below.

Anirn Matrix Operations
rstack replace the entire stack up to this point
rare replace the matrix on the specified arc
rboth replace the entire stack and the arc matrix
rmul arc_matrix - arc_matrix * matrix
lmul arc_matrix - matrix * arc_matrix

6 Purists will note that MatrixA is not directly stored in the database. It exists as a conceptual aid to editing models and
creating animations. In reality MatrixA will be combined with each of the matrices MatrixPr, MatrixBr, MatrixEr,
MatrixCr, MatrixTr, MatrixLr from the table above.

8

For example, the following command always replaces the matrix on the arc between " arm" and " hand" with a
new matrix:

anim arm/hand matrix rare

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1•

'
Whereas in the next example the matrix will be replaced only when " ann/hand" occurs as a direct child of
"body/left" in the database tree. This would permit the left and right hands to be modeled as different instances of
a single hand prototype, and still allow the left hand to be manipulated without affecting the right hand.

anim body/left/arm/hand matrix rare

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 t·

'
Finally, a command of the form:

anim hand matrix rare

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1;

operates on any arc which ends in a node called ''hand' ' regardless of where it occurs in the model hierarchy. Note
that element "hand" in these examples above is not a leaf node (primitive solid) in the model graphJ

All object parameters in the database are stored using millimeters as the unit of measure. As a result, all
matrix operations are carried out in units of millimeters. It is important to remember this when preparing matrices
for use with the rt anim command. An example rt session will serve to illustrate the proper use of the anim com
mand.

The following shell script "trans.sh" runs rt to create two separate images.s The first is saved in the file
"trans.pix.1" and is approximately the view selected for the key-frame "moss_8" in Section 2.

#!lbin/sh
rt -M $* -o trans. pix moss.g 'all.g' 2>> trans.log <<EOF
viewsize 200;
eye_pt 20.0 0.0 100;
orientation 0.0 0.0 0.924 0.383;
start 1;
clean;
end;

start 2;
clean;
anim all.g!tor.r matrix rare

1 00 0

end
EOF

010 80
0 01 0
000 1;

7 With version 4.2 of BRL-CAD and beyond the user will be able to manipulate the matrices on the arcs between
primitive solids and their parent combinations.

8 The "pix-fb" utility can be used to display these images on the framebuffer.

9

The second image is saved in "trans.pix.2" and is the same except that the matrix on the arc between " all.g" and
" tor.r" is replaced with a new matrix. This matrix has the effect of translating the torus 80 millimeters along the Y
axis of the model coordinate system. Plate 2 shows trans.pix.1 and Plate 3 shows trans.pix.2.

3.3. Preparing an Animation with Motion

It is time to re-visit the animation sequence we developed in Section 2. We are going to add animation of the
objects in the scene to the existing eye-point movement already created. The ellipsoid will be given a constant velo
city along a vector which will take it through the center of the torus.

To make the ellipsoid pass through the center of the torus we must determine the vector from the center vertex
of "ellipse.s" to the center vertex of " tor"

% mged moss.g
BRL-CAD Release 4.1 Graphics Editor (MGED)

Tue Oct 20 14: 19:59 EDT 1992, Compilation 5
stay@vail:/n/wolf/rnldist4.1 /mged

attach (nultekltek41091pslplotlsgi1X)[nu]? sgi
ATTACf.ITNGsgi(SGI~)

Gary Moss's ''World on a Platter" (units-nun)
mged> I all.g
all.g: all.g (len 6) -

u platform.r
u box.r [-23.6989,13.41,8.02399)
u cone.r [22.0492,12.2349,2.11125e-07]
u ellipse.r [14.6793,-41.6077,38.7988]
u tor.r
u light.r

mged> I ellipse.s
ellipse.s: ellipsoid (ELL)

v (16.1309, 46.6556, -3.72252)
A (14.8761, 0, 0) mag-14.8761
B (0, 8.98026, -8.98026) mag-12.7
C (0, 8.98026, 8.98026) mag-12.7
A direction cosines-(0.0, 90, 90)
A rotation angle-0, fallback angle-0
B direction cosines-(90.0, 45, 135)
B rotation angle-90, fallback angle--45
C direction cosines-(90.0, 45, 45)
C rotation angle-90, fallback angle-45

mged> I tor
tor: torus (TOR)

V (4.91624, -32.8022, 31.7118), rl-25.4 (A), r2-5.08 (H)
N-(0, 1, 0)
A-(0, 0, 1)
B-(1, 0, 0)
vector to inner edge - (0, 0, 20.32)
vector to outer edge - (0, 0, 30.48)

mged>q

Doing a little vector math we find the vertex of the "ellipse.s" as it is found in "all.g" is at:

[
16.1309] [14.6793] [30.8102] 46.6556 + -41.6077 :;;; 5.0479
-3.7225 38.7988 35.0763

Now we subtract this from the origin of " tor" to get a vector that will translate " ellipse.s" to the center of the

10

torus. This vector is scaled by a factor to 2 to get a "net displacement" vector for the ellipsoid.

[[
4.9162] [30.8102]] [-51.7879] -32.8022 - 5.0479 * 2 = -75.7002

31.7118 35.0762 -6.7289

We can now create a new interpolation table with motion values to be interpolated. The ellipse will start mov
ing half a second after the sequence starts. It will reach its destination half a second before the end of the sequence.
Assuming that the time channel is being specified in units of seconds, the result is the table chans.ellanim.

0.5
7.25

chans.ellanim

0
-51 .78792

0
-75.7002

0
-6.72896

The interpolation is done much as it was in Section 2. The data from "chans.ellanim" is read into interpolation
channels 8, 9, and 10 within tabinterp. The use of linear interpolation ensures that the ellipse will move at a con
stant rate to its destination.

% tabinterp << EOF > chans.all
file chans.vsize 0;
file chans.eyept 12 3;
file chans.orient 4 5 6 7;
file chans.ellanim 8 9 10;
times 0 8 3;
interp spline 0 12 3 4 56 7;
interp linear 8 9 10;
EOF
cmd: file chans. vsize 0
chan 0: File 'chans. vsize', Column 1
cmd: file chans.eyept 1 2 3
chan 1: File 'cbans.eyept', Column 1
chan 2: File 'chans.eyept', Column 2
chan 3: File 'chans.eyept', Column 3
cmd: file chans.orient 4 5 6 7
chan 4: File 'chans.orient', Column 1
chan 5: File 'chans.orient' , Column 2
chan 6: File 'chans.orient', Column 3
chan 7: File 'chans.orient', Column 4
cmd: file chans.ellanim 8 9 10
chan 8: File 'chans.ellanim', Column 1
chan 9: File 'chans.ellanim', Column 2
chan 10: File 'chans.ellanim', Column 3
cmd: times 0 8 3
cmd: interp spline 0 1 2 3 4 5 6 7
cmd: interp linear 8 9 1 0
performing interpolations
writing output
%

An appropriate template such as the one below must be created for use with tabsub. Note the use of the "clean"
command tort at the beginning of each frame in the template. This is required after the "start" for each frame in rt
animation scripts which use the "anim" command. This command tells rt (librt actually) to forget any accumulated
animation matrices, thereby restoring the geometry to the form it has in the database.

11

% cat ell.proto
viewsize @0;
eye_pt@ 1 @2 @3;
orientation @4 @5 @6 @7;
start @(line);
clean;
anim all.g/ellipse.r matrix rmul

1 00@8
01 0@9
0 0 1 @10
000 1;

end;

% tabsub eiJ.proto cbans.all > ell.rtanim

We can preview the path that the ellipse will take by creating a plot file which can be used as an overlay in
mged.9

% awk '{print $2+30.8102 11 11 $3+5.0479 11 11 $4+35.07628}' chans.ellanim I\
xyz-pl > ell.pl

% mged moss.g
BRL-CAD Release 4.2 Graphics Editor (MGED)

Wed Nov 11 00:36:43 EST 1992, Compilation 770
mike@wolf.brl.mil:/rnlcad/.mged.5d

attach (nultekltek41091pslplotlsgi1X)[nu]? sgi
ATTACHING sgi (SGI 4d)
Gary Moss's "World on a Platter" (units-rom)
mged> e all.g
408 vectors in 0.459896 sec
mged> overlay ell.pl
db_lookup: could not find '_PLOT_OVER*'
mged>

The ' 'overlay'' command creates pseudo entries of the form '_PLOT_ OVERLAY_ ' in the version of the database
in memory. These are used to store the vectors of the overlay. They are never actually objects in the geometric
database on disk. The next time the overlay command is given, the " _PLOT_OVER*" objects are removed and
re-created. As a result, the message:

db_ lookup: could not find '_pLOT_OVER*'

is not a cause for concern.

Once again, a postage stamp animation can be created to view the positioning and motion of the camera and
objects. Plate 4 shows the output of the pixtile command below.

% rt -M -s200 -o ell.pix moss.g 'all.g' >& ell.log < ell.rtanim
% mv ell.pix ell.pix.O
% pixtile -s 200 -81024 ell.pix I pix-tb -h
0 1 2 3 4 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
% tbanim -h -p 5 200 25 3

9 In version 4.2 of BRL-CAD and beyond the animation sequence can also be viewed using the mged "preview"
command.

12

4. Making Frames for Video Tape

The use of "postage-stamp" animations with "fbanim" can provide useful visualization capabilities. Unfor
tunately, if there are enough frames to present a smooth sense of motion, the individual images are so small that
details are lost. If the images are made larger, the motion is no longer smooth.

Videotape offers the ability to maintain a moderate image size (usually at least 640x480 pixels) with a pass
able time resolution (25-30 frames per second).

There are several things to consider when preparing to make frames for videotape. These are:

(1) The frame rate of recording media.
(2) The capabilities of the video tape format
(3) The appropriate image size and quality.
(4) The aspect ratio of the images.
(5) Color selection.
(6) Computational capacity.
(7) Storage capacity.

4.1. Frame Rate

The television and video industry has not settled upon a world-wide standard for the encoding of video pic
tures. Some of the basic elements are common to all the standards. 10 Each frame of video is comprised of two
"fields." A field consists of either the even numbered scanlines or the odd numbered scanlines from the frame. II
To display the frame, first the field made up of the odd numbered scanlines is displayed. When this is completed,
the field containing the even numbered scanlines is displayed.

The NTSC video encoding system (used in the United States and Japan) displays approximately 30 frames per
second. 12 This means that 60 fields are displayed per second. The flicker that would ordinarily be perceived at 30
frames per second is substantially reduced. The PAL (Western Europe and Australia) and SECAM (France &
former Soviet Union variant) encoding formats display 25 frames per second or 50 fields per second.

4.2. Video Tape Formats

It is worth noting that not all videotape formats are created equal. Some are capable of retaining more image
detail than others. The table below lists the number of side-by-side alternating black-and-white vertical lines which
can be discerned in 3/4 the width of a single frame of video using each of the video recording formats. This is
referred to as "video lines of resolution" or "TV Lines" in the video technology literature.

Resolution of
Video Recording Formats

Format VLines
VHS (1/2 inch) 240

3/4 inch 260
3/4inch SP 380

SVHS (1/2 inch) 400
Hi8 400

BetaCam SP 400
D2 Digital Video 440

10 If one ignores the evolving standards for High Definitio.n Television (HDTV),

II For purposes of simplicity and practicality many details of the true structure of video imaging will be blatantly
glossed over. Such details are beyond the scope of this paper. Purists are asked to remain quiet. Novices are directed to
[Kennedy91] and [Benson85].

12 Color NTSC acrually uses 29.97 frames per second. The difference is only important when creating precisely timed
sequences.

13

There are other differences between the various formats listed. The table is roughly ordered from lowest to
highest image quality. If possible, avoid using formats closer to the top of the table for making original recordings.
Choose the best format available to you for making original recordings. It is usually easy to duplicate an original to
a less capable format for distribution. Plan on making all duplicates from original recordings if possible. Second
and third generation copies made with the analog recording formats will show degradation in color (bleeding and
noise), image stability (straight lines become wavy), and resolution. If the distribution copies of your animation
must be provided on VHS, keep in mind that fine details in the scene may be lost when the transfer is made to this
format.

4.3. Image Size and Quality

In order to know what size images need to be computed it is necessary to know something about the hardware
that will be used to convert the images to a video signal. The video encoding system found in the Silicon Graphics
Iris (tm) family of workstations encodes a 640x480 pixel image. The Abekas A60 Digital Video Disk system
encodes an image that is 720x486 pixels in size. Other video encoding hardware may use other resolutions. You
should determine the image size encoded by your hardware.l3

Frames should actually be computed at twice the resolution that will be used for the encoding (e.g. 1280x960
instead of 640x480) The "pixhalve" program is used to reduce frames to the appropriate size for video encoding.
The filter kernel used by pixhalve reduces sampling artifacts such as the pixel staircase effect on diagonal lines
(a.k.a. " jaggies") in the final image. It also attempts to "spread" single pixel details slightly (such as specular
glints of light off surfaces). This slight spreading helps to compensate for the fact that current video encoding and
recording techniques have difficulty with such fine details.

The " -Jl" option should also be given tort. This turns on the "ray jittering" feature of rt. Ordinarily, rt
traces rays through the center of each pixel. This can lead to visual artifacts resulting from the regular sampling
grid. When ray jittering is enabled, rt picks a different location inside each pixel at which it traces the ray. This
reduces the regularity of the sampling grid, and hence any artifacts that might result

4.4. Image Aspect Ratio

The rt program fits a viewing cube with 1:1 aspect ratio in model coordinates to the dimensions of the image
being created. This means that whenever a non-square image is created (such as a 4:3 aspect ratio picture for use in
video recording) the image is distorted. This is most noticeable when computing images of involving circular
objects such the sphere, rcc (right circular cylinder) or the torus. This becomes a problem when preparing images
for visual analysis and animation. The ' '-V'' option to rt provides the solution to the problem. The following shell
script demonstrates the use of the this option.

#!lbinlsh
compute 640x512 image to be displayed on system with square
pixels. compensate for the distortion of the viewing cube.
rt -M -w640 -n512 -V640:512 -o img.pix moss.g 'all.g' 2» img.log <<EOF
viewsize 1.421157820291206e+02;
eye_pt 20.21 -71.12 26.12;
orientation .707 0.0 0.0 .707;
start 0;
end;
EOF

This option should be used whenever non square images are being prepared, or when the images will be displayed
on a system with pixels which do not have a 1: 1 aspect ratio. The option allows the user to compensate for the dis
tortion introduced in these situations. Note that in the example above, " -V5:4" would have produced the same
results. Many users find that using the dimensions of the image being computed is easier than computing the aspect
ratio in small integers.

13 While there is no " one size fits all" image size, the 640x480 resolution is common.

14

4.5. Color Selection

Video has a very limited capacity for color. It also does not have equal capacity for storing the primary colors
red, green, and blue. This usually comes as a great disappointment to people accustomed to looking at computer
images in rich detail on workstation monitors. Whenever possible, the colors for objects in a video scene should be
chosen to match the abilities of the video system being used.

The first rule of thumb is: if an image or scene is going to be recorded on video, the colors should be chosen
by viewing the scene through the video encoder, not on the workstation monitor. A good approach is to render
several images from your animation sequence, and record long runs of them in the same manner that will be used
for the final animation frames . View this test recording to see how colors will appear in the final result.

Blue objects in a scene are most likely to have visual noise to their appearance. A large smooth blue surface
is likely to look "grainy" in the final result. Small blue details will get lost in the noise.

Red objects are most likely to contribute to smearing or color-bleeding in the final result. Where possible,
avoid placing bright or predominantly red objects next to areas of important detail.

One other consideration worth mentioning is that no color in the scene should have more than a 75 percent
level of saturation. While this is rarely a problem with images generated by rt, it is a frequent ''beginner's mistake' '
when preparing title frames or other hand-painted images. The • 'fbcolor' • program makes the viewing and selection
of specific colors easy. It also reports the saturation level of the colors it displays as a number from 0 to 255. You
should avoid using any color which fbcolor reports as having a saturation over 191. If you should notice that an
object image created by rt lacks depth or surface detail (such as a lighted cylinder which shows no shading along the
curved surface), check to see what color it was given in the model. Reducing the saturation of the color given the
object should help improve its appearance.I4

4.6. Computational Requirements

There is a tradeoff to be made between the number of frames computed (and hence the computational require
ments) for a sequence of a given duration and the quality of the motion in the result Larger numbers of frames (and
more CPU time expended in their creation) result in smoother motion. Fewer frames per second result in more
"jerky" movement of the camera and objects.

The smoothest motion is obtained when an image is computed for each field of the final animation. Under
NTSC this produces the appearance of 60 separate images per second. This is just above the threshold at which
most individuals perceive flicker.

The scanlines for each field must be extracted from the images. The two fields which form a video frame are
combined together to create the video frames using the pixfields program. These are then encoded to video and
recorded. Besides the computational requirements, the only drawback is that sequences created in this manner do
not look as pleasing when used with "freeze frame" features common on videotape machines.

The most common compromise is to compute one image for each video frame of the final result. There is no
requirement for field compositing, and the image obtained from a "freeze frame" of the videotape machine is
pleasing. Under NTSC this produces the effect of 30 frames per second.

If each frame is shown for two or more successive frame times, the perception of motion begins to suffer. For
any finished product it is advisable to use each image for three or fewer frame-times.

It can take hours, days, or weeks of time for rt to create all of the images in an animation sequence. As a
result, there is a greater probability that rt will be interrupted before it can finish the task. If 200 images of a 300
image animation were completed before rt was interrupted, it would be a waste to re-create those images when rt is
restarted. Therefore rt was given some heuristics to allow it to avoid duplicating results and wasting CPU time.

Whenever the rt program is asked to create an image, it first looks to see if the image already exists. If the
image file exists and is read-only, the image is assumed to be completed and rt moves on to the next image. If the
image file exists and is writable, then rt looks for black pixels (R,G,B color 0,0,0) in the image. Since rt never
creates image pixels with this exact color, any such pixels it finds in the image are recomputed. If the file is smaller

14 You should also make certain that the image is viewed with the correct gamma compensation for the display device.
See the manual page for fbgamma for more information.

15

than the final image should be, rt computes only the missing portion to complete the file.
The amount of time required to create the frames of a particular animation sequence can be reduced by

employing more than one machine to perform the task. This can be done by giving multiple machines portions of
the sequence to create. If the sequence is divided up into frames, each machine can work on a set of frames. Alter
natively, the program "remrt" can be used in place of the "rt" program. Remrt distributes the computational load
for each frame across a large number of machines. Each machine is assigned a portion of the image to prepare. The
result is assembled on a single machine. For a more complete discussion of remrt see [Muuss90a].

4. 7. Storage Requirements

Animation frames can require a great deal of disk space. If the frames for a 20 second animation at 30 frames
per second were computed at a resolution of 1440x972 pixels per image, the result would be approximately 2.4
gigabytes of storage. Fortunately, it is possible to reduce this requirement substantially. The rt program can be
given a shel1 command to execute from within the animation script. For example, the file "ell.proto" could have
looked like this:

viewsize @0;
eye_pt @1 @2 @3;
orientation @4 @5 @6 @7;
start @(line);
clean;
anim all.g/ellipse.r matrix rmul

1 00@8
01 0@9
0 01 @10
000 1;

end;

! framedone.sh ell.pix @(line);

After each image is completed, rt would execute the shell command "framedone.sh" with the image number for an
argument. This shell script can be used to run pixhalve and compress the results and perform other functions. For
example:

% cat framedone.sb
#!lbin!sh
Script to be run by rt whenever a frame of an animation is completed.
Should be invoked from rt animation script as follows:

viewsize 200;
eye_pt 20. 0.0 83.25;
#orientation 0.0 0.0 .9238 .3826;
#start 3;
#end;
! framedone.sh file.pix 3;

if [$# -ne "2"] ; then

echo "Usage: $0 basename.pix frame_number" ; exit
fi

echo $0 $*

if ["$2" -eq "0"] ; then
FILE-$1

else
FILE-$1.$2

fi

16

pixhalve -wl440 $Fll..E > $FILE.sm
chmod -w $Fll..E.sm
compress $Fll..E.sm
chmod +w $Fll..E
mv $Fll..E.sm.Z $Fll..E

The second "if" statment in this script is necessary because rt does not append a frame number to the filename of
the first image in an animation sequence. This preserves compatibility with scripts intended for creating a single
frame.

5. Computing Video Frames

With the animation tables used in the moving ellipsoid example from Section 3, we can create all the frames
for a full-speed videotape recording. It is important to avoid file name conflicts between the images created for the
postage stamp animation and the frames for the video. Either tell rt to create frames with different names, or the
postage stamp frames must be renamed or removed before computing the video frames. Failure to do so will cause
rt to believe that the postage stamp frames are completed frames for the video animation. In the following example,
the frames will be created with the name "e11_vid.pix" to avoid conflict.

The arguments to the "times" command of tabinterp is slightly different from the previous example. The
difference is the number of frames per integer time step (seconds) is increased from 3 to 30.

% tabinterp << EOF > cbans.all
file chans.vsize 0;
file chans.eyept 12 3;
file chans.orient 4 5 6 7;
file chans.ellanim 8 9 10;
times 0 8 30;
interp spline 0 12 3 4 56 7;
interp linear 8 9 10;
EOF
cmd: file chaos. vsize 0
chan 0: File 'chans.vsize', Column 1
cmd: file chans.eyept 1 2 3
chan 1: File 'chans.eyept', Column 1
chan 2: File 'chans.eyept', Column 2
chan 3: File 'chans.eyept', Column 3
cmd: file chans.orient 4 5 6 7
chan 4: File 'chans.orient', Column 1
chan 5: File 'chans.orient', Column 2
chan 6: File 'chans.orient', Column 3
chan 7: File 'chans.orient', Column 4
cmd: file chans.ellanim 8 9 10
chan 8: File 'chans.ellanim', Column 1
chan 9: File 'chans.ellanim', Column 2
chan 10: File 'chans.ellanim', Column 3
cmd: times 0 8 30
cmd: interp spline 0 1 2 3 4 5 6 7
cmd: interp linear 8 9 10
performing interpolations
writing output

The new prototype contains an invocation of the ''framedone.sh'' script to process each image as it is completed.

17

%cat ell.proto.2
viewsize @0;
eye_pt@ 1 @2 @3;
orientation @4 @5 @6 @7;
start @(line);
clean;
anim all.g/ellipse.r matrix rmul

1 00@8
01 0@9
0 01 @10
000 1;

end;
! framedone.sh ell_ vid.pix @(line);

% tabsub ell.proto.2 chans.all > ell.rtanim
It is likely to be quite a while before all the images are computed. The rendering should be done as a batch job or
detached process using a script similar to the "ell2.rt" script below.

% cat ell2.rt
#!lbin/sh
rt -M -w1440 -n 972 -V1440:972 -Jl -o ell_vid.pix moss.g all.g 2>> ell.log < ell.rtanim

% eJI2.rt &

For instance it took almost ten hours to compute and process the 241 1440x972 images of our trivial geometry for
an 8 second animation on a Silicon Graphics 40/280. The final compressed images occupied approximately 39 MB
of disk space.

6. Recording Videotape

Once all the frames have been computed it is time to record them onto videotape. There are a variety of tools
and techniques for accomplishing this task. See [Kennedy91] for a description of some of the variety of equipment
which has been used at the Army Research Laboratory for this purpose. Only one of these techniques will be
covered here.

The Abekas A60 digital video disk stores 25 seconds or 750 frames of video on a high-performance disk.
Frames on this disk can be played at full video speed. The A60 provides video output as both CCIR 601 digital
video and an analog signal that is either R,G,B or Y,R-Y,B-Y. This analog signal can be readily converted to a for
mat for input to a video tape recorder.

Frames can be stored on disk either from a video input or by loading individual frames through an ethernet
interface. It is the latter which makes the device particularly useful in creating computer-generated video produc
tions.

Under BRL-CAD, access to the Abekas A60 is achieved through the framebuffer library.15 Conceptually, the
A60 has 750 unique framebuffers. The framebuffer device " /dev/ab" supports the A60. There are two very impor
tant options to this particular framebuffer. The first specifies the host address of the A60 on the TCPIIP network.
The host name or address for the A60 is specified by an at-sign "@" followed by the appropriate name or address.
For example, the framebuffer device "/dev/ab@vidisk" specifies that an A60 connected to the network with the
host name of "vidisk" should be used. The individual frame (or framebuffer) within the A60 is specified by a
sharp-sign ''#" followed by the integer frame number. Thus the full specification of a framebuffer device might be:

/dev/ab@vidisk#27
This specifies the frame 27 on the Abekas A60 with the host name "vidisk" . This can be used with any of the
framebuffer utilities, such as the " pix-fb" utility shown on the next page.

1 ~ See the manual page for LIBFB supplied with the BRL-CAD distribution or [Muuss90a] for more information about
the framebuffer support library in general.

18

% pix-tb -F/dev/ab@vidisk#27 -w 720 -n 486 ell_ vid.pix.27

This loads the image file "ell_vid.pix" into frame number 27 on the A60 called "vidisk".

Two more options worth noting are the "o" and " v" options to the A60 framebuffer device. The " o "
option indicates that this is an " output only" access of the framebuffer. The overhead of retrieving the image
already in the framebuffer is skipped when this option is specified. The "v" option turns on verbose logging of the
access to the framebuffer. This is primarily useful to enable the user to watch the progress of the framebuffer
access.

This can be generalized into a shell loop to load the 241 "ell_vid.pix" images into the A60.

% mv ell_ vid.pix ell_ vid.pix.O
% foreach i ('loop 0 240')
? pix-tb -F/dev/abov@vidisk#$1 -w 720 -n 486 ell_ vid.pix.$i
?end

In this example successive images are loaded into successive video frames (framebuffers) in the A60. As each
frame is loaded, the user will see output indicating that the image is converted to YUV format and then loaded into
the A60.

Once the entire sequence (or a 25 second segment) has been loaded into the A60, the sequence can be played
and captured using a video tape recorder. A collection of 25 second video sequences can be edited together using a
television studio or post-production facility to create longer sequences.

7. Conclusion

Visualization of models in BRL-CAD need not be restricted to viewing static images. With the use of tabin
terp and tabsub the task of creating motion picture sequences becomes quite manageable. The result is that models
can be viewed from a variety of positions as they move, change, and evolve over time.

The tools discussed represent only one conceptual approach to the problem of specifying frames to be gen
erated for an animation sequence. With the advent of ubiquitous desktop graphics displays, it should be possible to
create the sequences using a more visual and interactive approach. Creating tools for this remains an area for
further work.

The authors wish to thank Mike Muuss and Phil Dykstra for creating the animation capabilities within rt and
mged. The authors also thank Mike Muuss for providing the documentation for tabinterp and tabsub that appears in
Appendix A and Appendix B respectively.

19

INTENTIONALLY LEFT BLANK.

20

8. References

[Benson85]

Television Engineering Handbook, Benson, K. Blair ed. McGraw-Hill Book Company, 1986. ISBN
0-07-004779-0

[Deitz89]

Deitz, P. H., W. H. Mermagen, Jr., and P. R. Stay. "An Integrated Environment for Army Navy and Air
Force Target Description Support," Proceedings of the Tenth Annual Symposium on Survivability and Vul
nerability of the American Defense Preparedness Association, Naval Ocean Systems Center, San Diego, CA,
May 10-12, 1988.
Also in The Ballistic Research Laboratory CAD Package Release 4.0 Manuals, Volume/, BRL-CAD Philoso
phy Page V1S04AOO

[Foley92]

Foley, James D., Andries van Dam, Steven K. Feiner, John F. Hughes, Computer Graphics, Principles and
Practice, Addison-Wesley Publishing Company, 1992. ISBN 0-201-12110-7
Note: Chapter 5, Section 6 presents homogeneous coordinate systems.

[Kennedy91]

Kennedy, Charles M. "Video Hardware for Making Movies," Proceedings of the 1991 BRL-CAD Sympo
sium, Aberdeen Proving Ground, Maryland, May 7-9 1991.
Also in The Balli.$tiC Research Laboratory CAD Package Release 4.0 Manuals, Volume V, Analyst's Manual
Page V5S14A01

[Muuss88a]

Muuss, M. ''Understanding the Preparation and Analysis of Solid Models'', Techniques for Computer Graph
ics, Rogers, D. F., and R. A. Earnshaw, ed. Springer Verlag, New York, pages 109-172. ISBN 0-387-96492-4
also ISBN 3-540-96492-4
Also in The Ballistic Research Laboratory CAD Package Release 4.0 Manuals, Volume V, Analyst's Manual
Page V5S08A05.

[Muuss88b]

Muuss, M. and P. Dykstra. "The RT Lighting Model." Proceedings of the BRL-CAD Symposium '88,
Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, June 28, 1988.
Also in The Ballistic Research Laboratory CAD Package Release 4.0 Manuals, Volume V, Analyst's Manual
Page V5SlOA03.

[Muuss90a]

Muuss, M. J. "Workstations, Networking, Distributed Graphics, and Parallel Processing" Computer Graph
ics Techniques: Theory and Practice Rogers, D. F., and R. A. Earnshaw ed., Springer-Verlag, 1990. ISBN
0-387-97237-4
Also in The Ballistic Research Laboratory CAD Package Release 4.0 Manuals, Volume V, Analyst's Manual
Page V5S06A02.

[Newman79]

Newman, W. M., and R. F. Sproul. Principles of Interactive Computer Graphics, 2nd ed., McGraw-Hill,
New York, 1979. ISBN0-07-046338-7
Note: Chapters 22 and 23 present matrix transformation and homogeneous coordinates.

21

[Rogers90]

Rogers, D. F., and J. A. Adams. Mathematical Elements for Computer Graphics, 2nd ed., McGraw-Hill, New
York, 1990. ISBN 0-07-053529-9 (hard cover) ISBN 0-07-053530-2 (soft cover)
Note: Chapters 2 and 3 present matrix transformation and homogeneous coordinates.

[Shoemake85]

Ken Shoemake "Animating Rotation with Quatemion Curves" Computer Graphics, Vol. 18 No. 3, July
1985, SIGGraph '85 Proceedings

22

• '

Appendix A:
Tabinterp

..

23

INTENTIONALLY LEFf BLANK.

24

T ABINTERP(l) BRL-CAD T ABINTERP(l)

NAME
tabinterp - combine and interpolate multiple data files to create an animation script

SYNOPSIS
tabinterp >table.final

DESCRIPTION

tabinterp reads a series of commands from standard input which designate what parts of various
data files should be used as input tables for various channels of animation parameters. Commands may
extend across multiple lines, and are semi-colon (';') terminated. Each channel is then interpolated using
one of a variety of interpolation techniques to provide an output table which has one line for each time step.

The overall notion is based on parameter tables. Each table is arranged so that every row (line)
represents the state of some set of parameters at a given time. Each column of the table represents a single
parameter, or data channel, with the left-most column always representing time.

The first task in preparing to use is to assign specific purposes to each channel in the output table.
For example, channels 0, 1, and 2 might be used to represent the X, Y, and Z positions of an object, respec
tively, while channels 3, 4, and 5 might be used to represent the "aim point" of the virtual camera, while
channel 6 might be used to represent the brightness of one of the objects or light sources, and channel 7
might be used to represent the zoom factor (viewsize) of the virtual camera. Once the channel assignment
has been decided upon, the source file containing the table of raw values for each channel must be
identified. Several output channels may get their raw values from different columns of a single input table
(file). Up to 64 columns of input may appear in an input table.

For each file which contains an input table, the file command is given to load the necessary
columns of raw values into the output channels. If a channel number in the list is given as a minus('-'),
that input column is skipped. Using the output channel assignments given above as an example, if an input
table named "tablel" existed which consisted of five columns of values representing (time, brightness,
objX, objY, objZ), then these values would be loaded with this command:

file filename chan_num(s);
file table I 6 0 1 2;

This command indicates that from the file "table I", the current time and four columns of parameters should
be read into the raw output table, with the first input column representing the time, the second input column
representing the value for output channel 6 (brightness), the third input column representing the value for
output channel 0 (objX), etc. Each row of the input file must fit on a single (newline terminated) line of
text, with columns separated by one or more spaces and tabs.

After all the file commands have been given, it is necessary to define over what range of time
values found in the raw output table will be processed, and how many rows of interpolated output should
be produced for each second (time unit) in the input file. This can be thought of as the "frames per second"
rate of the interpolation, and is usually set to 24 for film (cine) work, 30 for NTSC video, and 60 for field
at-a-time NTSC video. Any positive integer value is acceptable. (In fact, any time unit can be used, as the
time channel is dimensionless. Nothing depends on the units being seconds.) For example, the command:

times start stop fps;
times 1 7.3 24;

would cause tabinterp to process data values from time 1 second to 7.3 seconds, producing 24 output rows
uniformly separated in time for the passage of each second.

After the times command has been given, it is necessary to associate an interpolator procedure or
a "value generator" procedure with each output channel. The available interpolator procedures are: step,
linear, spline, cspline, and quat. For example, the command:

interp type chan_num(s);
interp linear 3 4 5;

25

TABINTERP(l) BRL-CAD TABINTERP(l)

would indicate that output channels 3, 4, and 5 (representing the camera aim point) would be processed
using linear interpolation. If only a starting and ending values are given in the input (i.e. the input file had
only two rows), then this is an easy way of moving something from one place to another. In this case, if
more than two input rows had been provided, there would be a noticeable "jerk" as the camera passed
through each of the input parameter values, an effect which is rarely desired. To avoid this, the spline
interpolator can be used, which fits an interpolating spline (with open end conditions) through the given
data values, resulting in smooth motion. If the starting and ending values are the same, a continuous spline
(with closed end conditions) can be used instead by specifying cspline. Both of the spline interpolators
require at least three rows to have been provided in the input file.

If the output values are to "jump" from one input value to the next, (i.e. no interpolation at all is
desired), then specify step. This can be useful for having lights switch between several intensities (for
example, a 3-way bulb with 30, 70, and 100 watt settings), or for having objects "teleport" into position at
just the right moment.

The interpolation method indicated on the interp command is assigned to all the output channels
listed. One exception to this rule is the quat (Quatemion) interpolator. Quatemions are used to describe
an orientation in space, and can be most easily thought of as containing a vector in space, from which they
obtain a pointing direction, and a "twist" angle around that vector. To do this, quatemions are processed in
blocks of four channels, which must be numbered sequentially (e.g. channels 7, 8, 9, 10). Giving the com
mand

interp quat 7 15;

assigns the quatemion interpolator to two blocks of four channels, the block starting with channel 7 (e.g.
channels 7, 8, 9, 10), and the block starting with channel15.

tabinterp is strictly an interpolator. It will not extrapolate values before the first input value, nor
after the last output value. The first or last value is simple repeated.

In addition to interpolation, it is possible to specify rate and acceleration based output channels.
In cases where the exact running time of a scene is not known, the rate and accel commands can be quite
useful. One command is given for each output channel. For example,

rate chan_num init_value incr_per_sec;
rate 6 1.5 0.5;

says to make channel 6 a rate based channel, with the initial value (at time-0) of 1.5, linearly increasing
with an increment of 0.5 for the passing of every additional second. In this case, the value would be 2.0 at
tirne-1 , 2.5 at tirne-2, and so on. This can be used to establish linear changes where it is the increment and
not the final value that is important. For example, the rotation angle of a helicopter rotor could be specified
in this way.

Similarly, the command

accel chan_num init_ value mult_per_sec;
accel5 10 2;

says to make channel 5 an acceleration based channel, with the initial value at time-D of 10.0, which is
multipled by 2 for every additional second. In this case, the value would be 20.0 at time-1, and 40.0 at
time-2. This can be useful to create constant acceleration, such as a car accelerating smoothly away from
it's position at rest in front of a stop sign. If the initial value is zero, all subsequent values will also be zero.

Sometimes it is desirable to create an output channel which looks ahead (or behind) in time. For
example, a good way to animate a rocket flying on a complex course would be to simply animate the posi
tion of the base of the rocket, and then look ahead in time to see where the rocket is going to go next in
order to determine where to aim the nose of the rocket (by rotating it). This kind of lookahead is easily
implemented using the next command. (See also the fromto directive in which is used in conjunction with
this). The command

26

T ABINTERP(l)

next dest_chan src_chan nsamp;
next 4 5 +3;

BRL-CAD TABINTERP(l)

says to fill channel 4 with the values that will be present in channel 5 at 3 output rows later on. Negative
values are also pennitted. Since the lookahead is defined in tenns of output rows rather than time steps,
this means that the values generated for this column will change as the frames per second (fps) value on the
times command is changed. This is almost always the effect which is desired, since as the temporal resolu
tion of the interpolation is increased, the accuracy of the look-ahead will increase as well. However, if the
effect desired is one of ''have the camera track where the main actor was three seconds ago", then the
number of steps given here will have to be changed when the fps value is changed. Be careful of the
values generated for the last (or first) nsamp output rows. Looking forward or backward in time beyond
the bounds of the interpolation will retrieve the last (or first) output values. So it takes nsamp output rows
to ''prime the pumps".

Whenever a pound sign ('#') is encountered in the command input, all characters from there to the
end of the input line are discarded. This is the same commenting convention used in the Bourne shell,

When tabinterp encounters an end-of-file on it's standard input, it computes the requested inter
polations, and writes the output table on standard output. If no values have been assigned to an output
channel, then the value given is a single dot (' .'). This preserves the positional white-space-separated
columns nature of the output table. If this column is read as a numeric value by a downstream program, it
will be accepted as a valid floating-point zero.

As an aid to debugging, it is possible to dump the raw values of columns of the output table before
the interpolation is run:

idump;
idump chan_num(s);

If no output channel numbers are given, all channels are dumped, otherwise only the indicated channels are
dumped.

The help command can be given to get a list of all available commands. (Don't forget the semi-
colon).

EXAMPLE
What follows here is a Bourne shell script which will generate two input tables using ''here documents",
and will then produce an interpolated output table of 8 channels.
#!lbinlsh
cat << EOF > table.aim
-1 0 00 42 250
3 1 2 3 28 300
7 3 4 5 17 350
EOF
cat « EOF > table.obj
0 17 38 44
2 43 47 3
4 99 23 18
EOF
tabinterp << EOF > table. final
Channel allocations:
0,1,2objX, objY, objZmain actor position
3,4,5airnX, aimY, aimZcamera aim point
6light brightness
7viewsize

Input table column allocations: time, airnX, aim Y, aimZ, junk, viewsize
file table.aim 3 4 5 - 7;

27

T ABINTERP(l) BRL-CAD TABINTERP(l)

#Input table column allocations: time, objX, objY, obxZ
file table.obj 0 1 2;
Channel 6 is not read in here, but is rate base.

Tstart, Tstop, fps
times 0 4 30;

Assign interpolators to output channels
rate 6 1000 50;# 1000 lumen bulb keeps getting brighter ...
interp linear 0 1 2;
interp spline 3 4 5;
interp spline 7;
EOF

Try clipping this example out of the manual page (usually found in
/usrlbrlcad/man/manlltabinterp.l) and running it. This example will be continued in the manual page for

POST PROCESSING

Because both the input and output tables consist of a single line of text for each time step, many of
the standard UNIX tools can be brought to bear to assist in creating an animation. To visualize the exact
position taken by the aim point in the example (output channels 3, 4, 5), a UNIX-plot file of that trajectory
can be created with:

cut -f5,6,7 table.finall xyz-pl > aim.pl
cut -fl ,5,6,7 table.finall txyz-pl > aim.pl

Similarly, the position of the main object can be viewed with

cut -£2,3,4 table.finall xyz-pl > obj.pl

tabinterp uses 0-based column numbering, while cut uses 1-based column numbering. Also, the first out
put column from tabinterp is always the time. The 0-th data column comes second.

The plot file just created can be viewed using or or it can be viewed in by giving the command

overlay aim.pl

to mged. If the model geometry is brought into view using the mged e command, then the camera aim
track (or any other spatial parameter) can be viewed in direct relationship to the three dimensional
geometry which is going to be animated.

PREPARING INPUT TABLES

The savekey and saveview commands can be very useful for creating the input tables necessary
for driving The details of doing this are beyond the scope of this manual page.

The command can also be useful for routing through the output files of existing scientific analysis
programs, and extracting the few gems of data hurried in the heaps of "printout".

SEE ALSO
tabsub(l), xyz-pl(l), txyz-pl(l), cut(l), paste(l), rt(l), mged(l)

DIAGNOSTICS
In it's present form, the program is a bit verbose, reporting on the progress of each command on standard
error. This behavior will probably be placed under control of a -v flag in a future version.

BUGS
You can't grep dead trees.

AUTHOR
Michael John Muuss

SOURCE

28

T ABINTERP(l) BRL-CAD

The U.S. Anny Research Laboratory
Aberdeen Proving Ground, Maryland 21005

BUG REPORTS

TABINTERP(l)

Reports of bugs or problems should be submitted via electronic mail to <CAD@BRL.MIL>.

29

INTENTIONALLY LEFT BLANK.

30

AppendixB:
Tabsub

31

INTENTIONALLY LEfT BLANK.

32

TABSUB(l)

NAME
tabsub - macro expand an input table into an animation script

SYNOPSIS
tabsub template_ file <table.final >>script

DESCRIPTION

TABSUB(l)

tabsub takes as input a data table on standard input (such as might have been produced by or simi
lar tool), and a template file named on the command line. For each row (line) of the input table, one com
plete copy of the template file is output on standard output. As the template is output, any macro invoca
tions in the template file are replaced with the data values from the input table's current row. In the input
table, any blank lines or lines with a pound sign ('#') as the first character are ignored, allowing comments
to be added to the input table.

Macro invocations in the template file all begin with an at-sign ('@ '). In order to send an at-sign
through to the output, a second at-sign must immediately follow it, e.g. when'@@' is encountered in the
template, a single '@' is output. To output the data value found in a given channel in the current input row
of the data table, the at-sign is followed by the channel number, e.g. to output the value in channel four,
specify '@4', and to output the value in channel 42, specify '@42'. In some circumstances it my be desir
able to highlight the difference between channel value substitution, and literal numeric values. To facilitate
this, the channel number may be enclosed in parenthesis to explicitly delimit the macro invocation. For
example, channel four could also be specified as '@(4)', and channel 42 as '@(42)' . This second notation
is generally preferred.

The tabsub program is intended primarily for creating scripts relating to animation. To facilitate
this, a variety of more complex macros also exist.

@(line)

will output the row (line) number of the input table which is currently being processed, with the first line
being numbered zero. This is useful for creating frame numbers, or other sequence tags in the output.

@(time)

will output the time value which is always found in the left-most column of the current row.

The more complex macros can also take arguments. If the first character of an argument is an at
sign('@') (or percent-sign('%'), for backwards compatibility), then the number that follows signifies an
input channel substitution as before. Otherwise the value is taken literally.

The rot macro is used to convert three Euler angles given in degrees into a rotation expressed as a
4x4 homogeneous transformation matrix.

@(rot x_angle y_angle z_angle)

The arguments may be either numeric constants, column value macros, or a combination of both. The
matrix is generated by calling the routine mat_ angles which performs the rotation around the Z axis first,
then Y, then X. For example, the macro

@(rotO 0 45)

creates the following matrix, a 45 degree rotation about Z:

7.071067812e-01 -7.071067812e-01 O.OOOOOOOOOe+OO O.OOOOOOOOOe+OO
7.071067812e-Ol 7.071067812e-Ol -0.000000000e+00 O.OOOOOOOOOe+OO
O.OOOOOOOOOe+OO O.OOOOOOOOOe+OO l.OOOOOOOOOe+OO O.OOOOOOOOOe+OO
O.OOOOOOOOOe+OO O.OOOOOOOOOe+OO O.OOOOOOOOOe+OO l .OOOOOOOOOe+OO

Similarly, the macro

@(rot @4@5 90)

creates a rotation matrix where the angle of rotation around X is taken from input channel four, theY angle

33

TABSUB(l) TABSUB(l)

is taken from input channel five, and the Z angle is fixed at 90 degrees.

The xlate macro converts three distances (which must be specified in millimeters if the output
script is destined for processing by or into a translation expressed as a 4x4 homogeneous transformation
matrix.

@(xlate dx dy dz)

The matrix is generated by invoking the C macro MAT_DELTAS found in h/vmath.h. For example, the
macro

@(xlate 100 -20 300) creates the following matrix:

l.OOOOOOOOOe+OO O.OOOOOOOOOe+OO O.OOOOOOOOOe+OO 1.000000000e+02
O.OOOOOOOOOe+OO l .OOOOOOOOOe+OO O.OOOOOOOOOe+OO -2.000000000e+Ol
O.OOOOOOOOOe+OO O.OOOOOOOOOe+OO l.OOOOOOOOOe+OO 3.000000000e+02
O.OOOOOOOOOe+OO O.OOOOOOOOOe+OO O.OOOOOOOOOe+OO 1.000000000e+00

Similarly, the macro

@(xlate 13 @7 0)

creates a matrix where the origin is translated 13 units (mm) in X, and the number of units found in input
channel 7 in Y. No translation occurs in Z.

The orient macro combines the operation of the rot zand xlate macros, and also offers optional
scaling. The invocation is one of:

@(orient tx ty tz rx ry rz)
@(orient tx ty tz rx ry rz scale)

where all rotation is done first, then the translation, and then the scaling (if given).

The ae command converts style azimuth and elevation angle given in degrees into a rotation
expressed as a 4x4 homogeneous transformation matrix.

@(ae azimuth elevation)

The matrix is generated by calling the routine mat_ae

The quat command converts a quaternion into a 4x4 homogeneous transformation matrix.

@(quat x y z w)

The fromto command is used to rotate the given axis to point in the same direction as the vector
formed by subtracting the 'next' point from the 'cur' point

@(fromto axis cur_x cur_y cur_z next_x next_y next_z)

The axis argument must be one of these six strings: +X, -X, +Y, -Y, +Z, -Z, where the axis letter is capital
ized. The matrix is generated by calling the routine mat_fromto where the 'from' argument is derived
from the axis given, and the 'to' argument is the unit-length difference 'next' -'cur'.

EXAMPLE I

Based upon the example started in the manual page for here is a Bourne shell script which will
generate the necessary template file using a ''here document", and then process the 8-channel output table
left in the file ''table.final".

#!lbin/sh
This template will be instantiated once for each frame to be made.
cat << EOF > template

start @(line);
clean;

34

TABSUB(l)

lookat_pt @(3) @(4) @(5);
viewsize @(7);
anim all.g/actor.g matrix nnul
@(xlate @0 @1 @2);
anim all.g/light.r material rparam
inten-@(6) angle-70 invisible-I;

end;
! framedone.sh actor.pix.@(line);

EOF
#This is the start of the animation script, which will be appended to below.
cat << EOF > script
viewsize 3000;
eye_pt -4.429280979044739e+03 -1.6337229507 49571e+03 -1.624787858562220e+03;

TABSUB(1)

orientation 5 .435778713738288e-01 4.980973490458696e-Ol 4.564221286261679e-Ol 4.980973490458693e-01;
#frame data follows
EOF
Append the data for each frame
tabsub ./template < table.final >> script

The frame number is taken from the input table line number, and substituted into the start com
mand. The main actor position is taken from channels 0,1,2 and applied (as an "articulation") to the matrix
located along the arc between "all.g" and "actor.g" in the mged database. The camera (eye) position stays
fixed for this animation, but the camera orientation is changed by substituting channels 3,4,5 into the
loolwt _yt command, and the viewsize (zoom lens setting) is changed by substituting channel 7 into the
viewsize command. The argument to the light region's material property string is replaced with a new
string that spells out the current light parameters. After the end command, a shell escape is constructed,
which will run a script called "framedone.sh" with the given argument (which has been arranged to be the
file name of the file that just wrote, so that it can be post-processed, compressed, sent to a video recorder,
etc.

Try clipping this example out of the manual page (usually found in
/usrlbrlcadlman!man1/tabsub.l) and running it.

EXAMPLE2

In the manual page, mention was made of animating the flight of a rocket. This partial example
outlines how that might be accomplished.

tabinterp << EOF > rocket.final
Channel allocations:
0,1,2position of base of rocket
3,4,5next position of base of rocket

Input table column allocations: time, X, Y, Z
file rocket. table 0 I 2;

times 0 4 60;

Assign interpolators to output channels
interp spline 0 1 2;

#Get +1 "look ahead" on values, for auto-guidance
next3 0 1;
next411;
next 52 1;
EOF

35

TABSUB(l) TABSUB(l)

cat<< EOF >rocket. template

start @(line);
clean;
anim all.glrot.g matrix rmul
@(xlate @0@ 1 @2);
anim rot.g/rocket.g matrix rmul
@(fromto +Z @0@ 1 @2 @3 @4 @5);

end;
EOF
tabsub ./rocket.template < rocket.final >> script

The items worthy of note are the use of the next command to place the position look-ahead into
channels 3,4,5 and the matching use of the tabsub fromto macro to convert the current and next positions
into an appropriate rotation. In this case, the central axis of the rocket as found in the database rises up the
+Z axis. Translating the rocket into position is handled one matrix higher up the tree, using the xlate
macro.

POST PROCESSING

rt style animation scripts can be processed by and by giving the-M option on the command line,
and providing the script on standard input. For example, the rocket animation might be run like this:

rt -M -V4:3 -w1440 -n972 -p90 -o rocket.pix rocket.g all.g <script

to produce images in NTSC ("Academy" 4:3) aspect ratio at double the nonnal resolution, suitable for later
processing by ·

The same animation can be previewed in near real-time using For this example, would be started
with

mged rocket.g

followed by attaching to an appropriate display device. Then, these commands would be given:

e all.g
preview script

will process each frame as fast as it can, and update the screen.
SEE ALSO

tabinterp(l), xyz-pl(l), txyz-pl(l), cut(l), paste(l), rt(l), mged(l)
BUGS

There is presently a compiled-in limit of 1023 channels in the input table.
AUTHOR

Michael John Muuss

SOURCE
The U.S. Army Research Laboratory
Aberdeen Proving Ground, Maryland 21005

BUG REPORTS
Reports of bugs or problems should be submitted via electronic mail to <CAD@BRL.MIL>.

36

Plate 1

Plate 2 Plate 3

Plate 4
Following page intentionally left blank

37

No. of No. of
~ Organization ~ Organization

2 Administrator 1 Commander
Defense Technical Info Center U.S. Army Missile Command
ATTN: DTIC-DDA ATTN: AMSMI-RD-CS-R (DOC)
Cameron Station Redstone Arsenal, AL 35898-5010
Alexandria, VA 22304-6145

1 Commander
1 Commander U.S. Army Tank-Automotive Command

U.S. Army Materiel Command ATTN: AMSTA-JSK (Aimor Eng. Br.)
ATTN: AM CAM Warren, MI 48397-5000
5001 Eisenhower Ave.
Alexandria, VA 22333-0001 1 Director

U.S. Army TRADOC Analysis Command
1 Director ATTN: ATRC-WSR

U.S. Army Research Laboratory White Sands Missile Range, NM 88002-5502
ATTN: AMSRL-OP-CI-AD,

Tech Publishing (Oul. only)1 Commandant
2800 Powder Mill Rd. U.S. Army Infantry School
Adelphi, MD 20783-1145 ATTN: ATSH-CD (Security Mgr.)

Fort Benning, GA 31905-5660
1 Director

U.S. Army Research Laboratory (Unclau. only) 1 Commandant
ATTN: AMSRL-OP-CI-AD, U.S. Army Infantry School

Records Management ATTN: ATSH-WCB-0
2800 Powder Mill Rd. Fort Benning, GA 31905-5000
Adelphi, MD 20783-1145

1 WL/MNOI
2 Commander Eglin AFB, FL 32542-5000

U.S. Army Armament Research,
Development, and Engineering Center Aberd~n PrQving Qmyn!l

ATTN: SMCAR-IMI-1
Picatinny Arsenal, NJ 07806-5000 2 Dir, USAMSAA

ATTN: AMXSY-D
2 Commander AMXSY-MP, H. Cohen

U.S. Army Armament Research,
Development, and Engineering Center 1 Cdr, USA TECOM

ATTN: SMCAR-TDC ATTN: AMSTE-TC
Picatinny Arsenal, NJ 07806-5000

1 Dir,USAERDEC
1 Director ATTN: SCBRD-RT

Benet Weapons Laboratory
U.S. Army Armament Research, 1 Cdr, USACBDCOM

Development, and Engineering Center ATTN: AMSCB-Cll
ATTN: SMCAR-CCB-1L
Watervliet, NY 12189-4050 1 Dir,USARL

ATTN: AMSRL-SL-1
1 Director

U.S. Army Advanced Systems Research 5 Dir, USARL
and Analysis Office (ATCOM) ATTN: AMSRL-OP-CI-B (Tech Lib)

ATTN: AMSAT-R-NR, MIS 219-1
Ames Research Center
Moffett Field, CA 94035-1000

39

No. of
Copies Organization

Aberdeen Proving Ground

30 Dir, USARL
ATIN: AMSRL-SL-BV,

Lee A. Butler (328)(25 cp)
AMSRL-WT-WE,

Christine A. Murdza (5 cp)

40

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your
comments/answers to the items/questions below will aid us in our efforts.

1. ARL Report Number _ _ ARL __ -_TR_-_3_1_3 ______ Date of Report _D_e_c_e_mb_er_l_9_9_3 __ _

2. DateReportReceived _________________ __________ _

3. Does this report satisfy a need? (Comment on purpose, related project. or other area of interest for

which the report will be used.)-------------- -----------

4. Specifically, how is the report being used? (Information source, design data, procedure, source of
ideas, etc.) ________________________________ _

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved,

operating costs avoided, or efficiencies achieved, etc? If so, please elaborate. ----------

6. General Comments. What do you think should be changed to improve future reports? (Indicate
changes to organization, technical content, format, etc.)-----------------

CURRENT
ADDRESS

Organization

Name

Street or P.O. Box No.

City. State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address
above and the Old or Incorrect address below.

OLD
ADDRESS

Organization

Name

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

DEPARTMENT OF THE ARMY

OFRCIAl BUSINESS BUSINESS REPLY ~LUL
ARST CLASS PERMIT liJ 0001, APQ, MD

Postaoe will tie pa1d tly addtessee.

Director
U.S. Army Research Laboratory
ATTN: AMSRL-OP-CI-8 (Tech Lib)
Aberdeen Proving Ground, MD 21005-5066

I I N O POST A G C:
NEC ESSARY
If MAI L ED

IN THE
UNI TED S TATE!

------------------------------ --·------ --------------------------

;

